MATRIX is hosted by Hepforge, IPPP Durham

MATRIX

(MUNICH Automates qT-subtraction and Resummation to Integrate X-sections)

Massimiliano Grazzini, Stefan Kallweit and Marius Wiesemann (e-Print: arXiv:17XX:XXXXX)

/-------------------------------------------------------------------\
| MATRIX: A fully-differential NNLO(+NNLL) process library          |
|           __  __     ___     ____    ___         _     _          |
|          | _\/_ |   / _ \   |____|  / _ \   ||   \\   //          |
|          || \/ ||  | |_| |    ||    ||_||   ||    \\ //           |
|          ||    ||  | ___ |    ||    ||\\    ||    // \\           |
|          ||    ||  ||   ||    ||    || \\   ||   //   \\          |
|                                                                   |
| Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision -- |
| Automates qT-subtraction and Resummation to Integrate X-sections  |
|                                                                   |
| \          \ ____      \          \ ____      \ ____      \       |
|  \          \          |\          \          |\          |\      |
|   )====  +   )====  +  | )====  +   )====  +  | )====  +  |-)==== |
|  /          /          |/          /____      |/          |/      |
| /          /           /          /           /           /       |
|                                                                   |
\-------------------------------------------------------------------/


MATRIX is a process library for NNLO computations. All color-singlet production processes with up to two final-state particles handled consistently in the same framework (currently only missing: HV and HH). MATRIX is based on the Monte Carlo integrator MUNICH, which provides an automated computation arbitrary SM NLO processes and the phase-space integration. In combination with the a generic implementation of the transverse-momentum subtraction method MATRIX achieves NNLO accuracy on the fully differential cross sections. In particualar, the fully leptonic processes are considered including all resonant and non-resonant contributions. This consistently accounts for the leptonic decays of heavy vector boson with off-shell effects and spin correlations. As a consequence the lepton kinematics is accessible rendering possible direct comparison the experimental measurements (rates and unfolded distributions) in the fiducial volume by applying realistic cuts.


MATRIX (and earlier versions of the code) has been used in numerous state-of-the-art computations Higgs- and vector-boson processes at the LHC. Below you find the complete list of available processes with the relevant phenomenological references. MATRIX is based on a number of different computations and tools from various people and groups. Please acknowledge their efforts by citing the list of references which is created with every run.


Processes available in MATRIX (with and without decays of heavy vector bosons):

pp → Z
pp → W
pp → H
pp → γγ
pp → Zγ S. Kallweit, M. Grazzini, D. Rathlev, A. Torre; Phys.Lett. B731 (2014) 204-207 (e-Print: 1309.7000),
S. Kallweit, M. Grazzini, D. Rathlev; JHEP 1507 (2015) 085 (e-Print: arXiv:1504.01330)
pp → Wγ S. Kallweit, M. Grazzini, D. Rathlev; JHEP 1507 (2015) 085 (e-Print: arXiv:1504.01330)
pp → ZZ F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel,
S. Pozzorini, D. Rathlev, L. Tancredi, E. Weihs; Phys.Lett. B735 (2014) 311-313 (e-Print: arXiv:1405.2219),
S. Kallweit, M. Grazzini, D. Rathlev; Phys.Lett. B750 (2015) 407-410 (e-Print: arXiv:1507.06257)
pp → WW T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel,
S. Pozzorini, D. Rathlev, L. Tancredi; Phys.Rev.Lett. 113 (2014) no.21, 212001 (e-Print: arXiv:1408.5243),
S. Kallweit, M. Grazzini, S. Pozzorini, D. Rathlev, M. Wiesemann; JHEP 1608 (2016) 140 (e-Print: arXiv:1605.02716)
pp → WZ S. Kallweit, M. Grazzini, D. Rathlev, M. Wiesemann; Phys.Lett. B761 (2016) 179-183 (e-Print: arXiv:1604.08576),
S. Kallweit, M. Grazzini, D. Rathlev, M. Wiesemann; JHEP 1705 (2017) 139 (e-Print: arXiv:1703.09065)